A generalization of weight polynomials to matroids
نویسندگان
چکیده
Generalizing polynomials previously studied in the context of linear codes, we define weight polynomials and an enumerator for a matroid M . Our main result is that these polynomials are determined by Betti numbers associated with N0-graded minimal free resolutions of the Stanley-Reisner ideals of M and so-called elongations of M . Generalizing Greene’s theorem from coding theory, we show that the enumerator of a matroid is equivalent to its Tutte polynomial.
منابع مشابه
T-UNIQUENESS OF SOME FAMILIES OF k-CHORDAL MATROIDS
We define k-chordal matroids as a generalization of chordal matroids, and develop tools for proving that some k-chordal matroids are T-unique, that is, determined up to isomorphism by their Tutte polynomials. We apply this theory to wheels, whirls, free spikes, binary spikes, and certain generalizations.
متن کاملA Tutte-style proof of Brylawski's tensor product formula
We provide a new proof of Brylawski’s formula for the Tutte polynomial of the tensor product of two matroids. Our proof involves extending Tutte’s formula, expressing the Tutte polynomial using a calculus of activities, to all polynomials involved in Brylawski’s formula. The approach presented here may be used to show a signed generalization of Brylawski’s formula, which may be used to compute ...
متن کاملRemarks on One Combinatorial Application of the Aleksandrov–fenchel Inequalities
In 1981, Stanley applied the Aleksandrov–Fenchel Inequalities to prove a logarithmic concavity theorem for regular matroids. Using ideas from electrical network theory we prove a generalization of this for the wider class of matroids with the “half–plane property”. Then we explore a nest of inequalities for weighted basis–generating polynomials that are related to these ideas. As a first result...
متن کاملAn Introduction to Transversal Matroids
1. Prefatory Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Several Perspectives on Transversal Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1. Set systems, transversals, partial transversals, and Hall’s theorem . . . . . . . . 2 2.2. Transversal matroids via matrix encodings of set systems . . . . . ....
متن کاملCombinatorics Hidden in Hyperbolic Polynomials and Related Topics
The main topic of this paper is various " hyperbolic " generalizations of the Edmonds-Rado theorem on the rank of intersection of two matroids. We prove several results in this direction and pose a few questions. We also give generalizations of the Obreschkoff theorem and recent results of J. Borcea and B. Shapiro.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 339 شماره
صفحات -
تاریخ انتشار 2016